设D为Euclid环,A∈Mn(D),detA≠0,证明存在Mn(D)中可逆矩阵P使得 其中di≠0,且δ(entij(PA))<δ(di),j<i
问答题设D是p.i、d.,ai=∈D,ai=1,2,…,n,且有(a1,a2,…,an)=1.证明:存在Mn(D)中的可逆矩阵A,使row1A=(a1,a2,…,an)
问答题设D是p.i.d.,ai∈D,ai=1,2,…,n.又d为a1,a2,…,an的最大公因式.证明存在Mn(D)中可逆矩阵Q使得 (a1,a2,…,an)Q=(d,0,…,0)
问答题设D为Euclid环.c,k∈D,且c≠0.试证:A∈Mn(D)可逆当且仅当A可表示为P(i,j),P(c,i),P(k,i,j)型的矩阵的乘积
问答题α,β,γ∈R.证明当且仅当α=0时下面矩阵能对角化:
问答题用χA,ΔA分别表示矩阵A的特征多项式与极小多项式,在(λ-3)4(λ-5)4,ΔA=(λ-3)2(λ-5)2条件下求A的所有可能的Jordan标准形