已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点D,从每条曲线上取两个点,将其坐标记录于下表中: (1)求C1、C2的标准方程: (2)请问是否存在直线L满足条件:①过C2的焦点F;②与C1交不同两点M、N,且满足若存在,求出直线L的方程;若不存在,说明理由。
问答题已知向量a,b,满足|a|=|b|=1,且,其中k>0。 (1)试用k表示a·b,并求出a·b的最大值及此时a与b的夹角θ的值; (2)当a·b取得最大值时,求实数λ,使|a+λb|的值最小,并对这一结论作出几何解释。
问答题论述实施合作学习应注意的几个问题。
问答题已知,, (1)求tan2α的值: (2)求β。
问答题为什么在数学教学中要贯彻理论与实际相结合的原则?
问答题如何理解高中数学课程的过程性目标?