找考题网-背景图
问答题

案例分析题

下面为某校老师教授“等比数列”一节的教学片段:
环节一:举例引入等比数列的概念
环节二:等比数列概念的理解
环节三:类比等差数列通项公式的推导得等比数列的通项公式
环节四:学生自学例题并做练习
环节五:课堂小结和布置作业(剩余5分钟)
师:好了,我们这节课所研究的知识就到这里,接下来给大家一分钟的时间,请大家静静地回想这节课上我们学习了什么?你有什么样的收获?同时还存在哪些疑问?
师:我们来分享一下大家的收获,请问有哪位同学愿意和我们谈谈你有什么收获?
生甲:我这节课收获很大,首先我知道了什么样的数列是等比数列,其次懂得了等比数列的通项公式及其推导。
师:很好!这位同学收获确实很大啊!还有其他同学愿意分享自己的收获吗?
生乙:我还学会了用等比数列的定义、通项公式去解决一些简单的问题。
师:不错。还有吗?
生丙:学习了这节课,我学会了数学的类比思想,类比等差数列的知识来学习等比数列的知识。
师:很好!从这几位同学的发言中可以看出你们都有认真总结过这节课的知识!最后,课后研究作业是“报纸折叠38次的故事”,希望大家能用我们这节课所学的知识来理解一下这位数学家所说的话是否有他的道理?为什么?
请你结合上述教学过程,分析一下这样的课堂小结有哪些优点或可改进的地方。

【参考答案】

从这位老师能够留出5分钟的时间来进行课堂小结,足见对课堂小结的重视程度。从小结内容上看,一方面,这位老师让学生谈谈这节课有什么收获,同时还存在什么疑问。通过这一环节让学生反思所学的内容,并口述出来。既培养了学生的归纳概括能力,又锻炼了学生的数学表达能力,学生只有在脑海里思考整理所学内容,才能清楚地意......

(↓↓↓ 点击‘点击查看答案’看完整答案 ↓↓↓)
热门试题

问答题针对“点到直线的距离公式”,有两位老师分别设计了以下两个教学片段。请你分析哪一个教学情境更好。 (一)师:一条河的两岸可以看成平行的直线,某人在岸边要驾驶船到对岸,请问,他应该选择在哪个位置到对岸,才能以最短的路径实现目的? 生:随便那个位置都可以,因为岸的一边上任意点到对岸的距离都相等。 师:为什么? 生:感觉。 师:这种感觉很好,但我们应该给予证明。今天,我们就来学习点到直线的距离公式。 …… (二)师:前面我们学习了平面上两直线的位置关系:平行与相交。当两直线相交时,我们采用角来刻画它们的“相交程度”。那么,如果两直线平行时,我们采用什么方法来刻画呢?(师平行地拿两支笔进行远近移动) 生:距离。 师:什么意思? 生:你刚才在比划,给我们一个感觉,两平行直线有远和近的区别。 师:好,那么怎样刻画两直线的距离呢? 生甲:作任意一条直线与两直线都垂直,被它们所截得的线段长度都相等,这个长度我们就定义为两平行线的距离。 师:很好!但要说明怎么作任意直线与两直线都垂直,还有别的什么方法? 生乙:其实,两平行直线上的一点到另一条直线的距离相等,这个距离可以定义为两平行直线间的距离。 师:很好!为了研究两平行直线的距离,我们可以选择甲和乙的办法,大家看,该选择哪个办法? 生丙:选择甲,因为点到点的距离最原始。 生丁:选择乙,因为点到直线的距离也是通过点到点的距离来刻画的,如果能够得到点到直线的距离,可以少走弯路。 师:两位同学的构思都有道理,那么,我们就合二为一。今天,我们就开始学习点到直线的距离。 ……