一个连续盈余过程的模拟。假设保险事故依照频率为2的泊松分布发生,理赔额服从帕累托分布,帕累托分布的参数α=2,θ=1000。初始盈余为1000,安全附加为0.2。保费的收取是连续的,当盈余为负则过程终止。
(1)假设有(0,1)均匀分布的随机数:0.83,0.54,0.48,0.14,请用反变换方法模拟理赔的时间间隔(小数字对应较短的时间间隔)。
(2)假设另有(0,1)均匀分布的随机数:0.89,0.36,0.70,0.61,请用反变换方法模拟理赔强度(小数字对应较少的理赔额),则根据模拟结果,在1时刻的盈余为()。