现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语。从中选出通晓日语、俄语和韩语的志愿者各1名组成一个小组。 (1)求A。被选中的概率; (2)求B1和C1不全被选中的概率。
问答题已知△ABC中,AB=AC,点D是△ABC外接圆劣弧上的点(不与点A,C重合),延长 BD至点E。 (1)求证:AD的延长线平分∠CDE; (2)若∠BAC=30°,△ABC中BC边上的高为,求△ABC的外接圆的面积S。
问答题如图,在直三棱柱ABC—A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1—A1C—C1的大小.
填空题=().
问答题已知复数z=a+bi(a、b∈R+)(i是虚数单位)是方程x2-4x+5=0的根,复数w-u+3i(u∈R)满足,求u的取值范围.
问答题点A,B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF。 (1)求点P的坐标; (2)设点M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值。