单项选择题圆心(-1,0),半径为的圆的方程()。
A.(x-1)2+y2=3 B.(x+1)2+y2=3 C.(x-1)2+y2=9 D.(x+1)2+y2=9
问答题如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC. (1)求证:AD=AE; (2)若AD=8,DC=4,求AB的长.
问答题如图,在△ABC中,∠A所对的BC边的边长等于m,旁切圆⊙O的半径为R,且分别切BC及AB、AC的延长线于D,E,F.求证:
问答题如下图所示,左边的楼高AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标 P位于距点C15m处. (1)请画出从A处看地面上距离点C最近的点.这个点与点C之间的距离是多少 (2)从A处能看见目标P吗为什么
问答题某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下图所示.阴影区域为绿化区(四块绿化区是全等的矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元. (1)设一块绿化区的长边为xm,写出工程总价y与x的函数关系式(写出x的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x为整数的所有工程方案;若不能,请说明理由.
问答题请你通过计算预测:大约到哪一年可以收回三峡工程的投资成本
问答题两球恰好颜色不同的概率。
问答题两个球都是白球的概率;
问答题如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上. (1)写出该抛物线的方程及其准线方程; (2)当PA与PB的斜率存在且倾斜角互补时,求直线AB的斜率.
填空题计算sin105°×cos75°的值等于().