已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长.
(1)在△ABC和△AFE中, ∴△ABC≌△AFE, ∴AB=AF. 又AE=AC, ∴BE=CF. ∴在△EBG和△CFG中, ∴△EBG≌△CFG, ∴BG=FG. (2)∵AD=DC=2,DE⊥AC,AE=AC, ∴AF=FC。 ∴AE=2AF=2AB. ∵∠AFE=∠EAD=90°.∴△EAF∽Λ△EDA.
问答题设a、b、c是直角三角形的三边,c为斜边,整数n≥3,求证:an+bn<cn.
问答题设直线y=ax+b与双曲线3x2-y2=1交于A、B,以AB为直径的圆过原点,求点P(a,b)的轨迹方程。
问答题本电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中每个月的销售情况如下表: 月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销量金额最大最大是多少 (2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予了财政补贴.受此政策的影响,今年3至5月份,该厂家销售到农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).
问答题列方程或方程组解应用题: 为保证学生有足够的睡眠,政协委员于今年两会上向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米
问答题求双曲线9x2-25y2=225的实轴长、虚轴长、焦点坐标、准线方程、渐近线方程、离心率。
问答题解不等式
填空题将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有()个.
问答题已知可行域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率 (1)求圆C及椭圆C1的方程; (2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线于点Q,判断直线PQ与圆C的位置关系,并给出证明,