问答题以直角三角形ABC的两直角边AC、BC为一边各向外侧作正方形ACDE、BCGH,连结BE、AH分别交AC、BC于P、Q.求证:CP=CQ.
问答题已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长.
问答题列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会上向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米
问答题如下图所示,一艘轮船以每小肘20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)
问答题一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白球的概率为0.5. (1)求口袋中红球的个数; (2)若从中摸出一个球后不放回,再摸出一个球,通过画树状图或列表分析,求两次均摸到白球的概率.
问答题若BC=4,AB=20,求三棱锥D-BCM的体积。
问答题求证:平面ABC⊥平面APC;
问答题求证:DM∥平面APC;
问答题已知函数,x∈R. (1)求f(x)的最小正周期和最小值; (2)已知求证:[f(β)]2-2=0.
问答题从4名男生和2名女生中任选3人参加演讲比赛,求所选的3人中至少有1名女生的概率。