设函数f(x)=z+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2。
问答题列方程或方程组解应用题: 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量分别为多少万人次
问答题本电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中每个月的销售情况如下表: 月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销量金额最大最大是多少 (2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予了财政补贴.受此政策的影响,今年3至5月份,该厂家销售到农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).
问答题已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长.
问答题以直角三角形ABC的两直角边AC、BC为一边各向外侧作正方形ACDE、BCGH,连结BE、AH分别交AC、BC于P、Q.求证:CP=CQ.
问答题如下图所示,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=2m (1)求此时另一端A离地面的距离(精确到0.1m); (2)跷动AB,使端点A碰到地面,画出点A运动的路线(写出作法,保留作图痕迹),并求出端点A运动路线的长(结果含π). (参考数据:sin18°≈0.31,cos18°≈0.95)