设直角三角形一锐角∠BAC=α(如图),则 ∵0<sinα<1,0<cosα<1, ∴sinnα<sin2α,cos2α<cos2α(n>3) ∴sinnα+cosnα<sin2α+cos2α=1, 故an+bn<cn.
问答题列方程或方程组解应用题: 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量分别为多少万人次
问答题在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF的度数.
问答题已知an是以a为首项,q为公比的等比数列,Sn为它的前n项和. (1)当S1、53、S4成等差数列时,求q的值; (2)当Sm、Sn、Sl成等差数列时,求证:对任意自然数k,am+k、an+k、al+k也成等差数列,
问答题列方程或方程组解应用题: 为保证学生有足够的睡眠,政协委员于今年两会上向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米
问答题已知向量,且 (1)求tanA的值; (2)求函数f(x)=cos2x+tanAsinx(x∈R)的值域.