已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC. (1)求证:BG=FG; (2)若AD=DC=2,求AB的长.
(1)在△ABC和△AFE中, ∴△ABC≌△AFE, ∴AB=AF. 又AE=AC, ∴BE=CF. ∴在△EBG和△CFG中, ∴△EBG≌△CFG, ∴BG=FG. (2)∵AD=DC=2,DE⊥AC,AE=AC, ∴AF=FC。 ∴AE=2AF=2AB. ∵∠AFE=∠EAD=90°.∴△EAF∽Λ△EDA.
问答题在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF的度数.
问答题设直线y=ax+b与双曲线3x2-y2=1交于A、B,以AB为直径的圆过原点,求点P(a,b)的轨迹方程。
问答题请设计出总运费最省的草皮运送方案,并说明理由。
问答题一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白球的概率为0.5. (1)求口袋中红球的个数; (2)若从中摸出一个球后不放回,再摸出一个球,通过画树状图或列表分析,求两次均摸到白球的概率.
问答题如下图所示,一艘轮船以每小肘20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)