问答题设A∈Pn×n,Tr(A)=0,证明:有X,Y∈Pn×n使XY-YX=A。
问答题证明:设A∈Pn×n,Tr(A)=0,则有Pn×n中可逆矩阵T使。
问答题令S是Pn×n中所有形如XY-YX的矩阵生成的线性子空间,又设H为Pn×n中迹为零的矩阵组成的空间,求证S=H,因而唯(S)=唯(H)=n2-1。
问答题f1(x),f2(x),…,fn(x)是闭区间[a,b]上的实函数,且在实数域上是线性无关的,证明:在[a,b]上存在数α1,a2,…,αn,使丨(fi(αj))丨≠0,i,j=1,2,…,n。
问答题设f(x)=ax4+bx3+cx2+dx+e为正系数4次多项式,令r1,r2,r3,r4是它的根,已知r1+r2为有理数,r1+r2≠r3+r4,证明:f(x)可表成两个次数较低的整系数多项式的乘积。