电极加热炉中石墨电极棒的传热问题可用以下方程描述式中D,U,A,T0均为常数,但导热系数kT为温度的线性函数,kT=k0-T,试求出上述方程的通解。
问答题求以下微分方程的解
问答题在一鼓泡容器内,初始时刻装有体积为V的氨盐水(NH3-NaCl-H2O),随后以流量F通入CO2气体,在液相中即发生以下碳酸化反应 这是制取纯碱(Na2HCO3)的基本反应,是一个连串反应过程。其中反应(1)为快速反应,发生在气液界面附近的液膜之内,而反应(2)、(3)为慢反应,发生在液相本体之中。设各步反应均为拟一级反应,其中NH3和Na大大过量,其浓度可近似考虑为常数。容器中的气含率ε、气液比表面积aV和液膜厚度δ均为已知量,液膜体积aVδ<<1,试分别对液膜和液相本体导出该反应过程的数学模型,给出分批式和连续式两种操作情况下的反应器模型。
问答题填料塔广泛用于气体吸收,气液两相采用逆流操作,液体从塔顶均布后加入,沿填料表面成液膜下降,气体从塔底加入,沿塔上升并与液体实现逆流接触,气体中的活性组分被液体吸收后从塔底流出,净化后的气体从塔顶排出,如图所示。设从塔底加入的气体中含有待吸收组分A和惰性气体,惰气流量为G(mol s),从塔顶加入的液体惰性溶剂的流量为L(mol s),组分A在液相中以一级反应进行分解,给定塔的直径D和塔高H、单位体积填料的液体持液量L(m3 m3)和气液传质系数kLa,以及化学反应速率常数kA、气液相Henry系数HA,试用微元分析法建立一数学模型,描述气相浓度yA(mol mol惰气)和液相浓度xA (mol mol溶剂)的沿塔分布,然后从模型中消去xA,得到yA的单一方程,并给出适当的边界条件。
问答题气液两相的传质过程与色谱过程有许多类似之处,例如,气相通过反应器(鼓泡塔、板式塔、填料塔等)的流动可以看成是溶质通过固定相的运动,气液传质阻力可类比于气固传质阻力,气液两相的逆流操作模式也与移动床相似。此外,气液两相在界面上处于平衡状态,由Henry定律表述,与§7.2节考虑的微孔分子筛的内扩散过程类似。与色谱问题不同的是,许多气液反应器(鼓泡塔与搅拌釜)中的液相或液固两相一般都处于全混流状态,而色谱柱中固定相是静止的,移动床中固体接近平推流。试根据与移动床的类比建立如图所示的鼓泡塔反应器的稳态数学模型,图中气体从塔底加入,经分布器之后形成分散的气泡并在液体中浮升,最后从容器的上部输出;液体则从塔顶加入,从底部流出。气相中的组分A被液体吸收后在液相中发生一级化学反应。鼓泡塔中气相的流动可考虑为平推流,液相考虑为全混流。其它已知的参数为:鼓泡塔液位高度l,气含率εg,空塔气速U,加入液体的质量流率F,单位体积气液传质系数kLa,一级反应动力学常数KA,Henry系数HA。所建立的数学模型要求包括以下内容: (1)设cg和cL分别为反应组分在气相和液相中的浓度,给出其方程和边界条件; (2)如果是强放热反应,反应热通过溶剂蒸发和气液相的连续流动移出,请自行设定有关物性参数,给出温度T满足的方程。
问答题在水平液面上垂直插入一个半径为R的毛细管,此时液体将在表面张力的拉动下沿着管中上升。弯曲液面形成的毛细压强可以用以下Yong-Laplace方程计算式中σ为气液表面张力,θ为气液界面与固壁之间的接触角,管中流体一方面受到毛细压强的驱动而上升,一方面又受到重力和粘性阻力的作用,设流动速度遵从粘性管流的Poiseuille分布,求: (1)对于两端开口的毛细管,证明液位高度H随时间t的变化满足以下方程式中μ为液体的动力学粘度,ρg为重力。 (2)对于上端封闭的毛细管,设总管长为l,管内气体满足理想气体状态方程,试推导相应的液位高度H的变化方程。 (3)从上述方程中求出最大液位高度H和时间变化关系H(t),据此讨论H变化的趋势。