A.内压作用下的厚壁圆筒,通过增加筒壁厚度可显著地提高筒壁强度,即使在压力很高的时候,也不失为一种有效的方法B.采用多层结构的高压厚壁圆筒,既可实现高压条件下所需较大的筒壁厚度,又可以有效地改善厚壁圆筒筒壁中的预应力分布C.通过对圆筒进行超工作压力下的自增强处理,可显著提高圆筒的屈服承载能力D.目前工程上尚未充分考虑多层结构中的预应力对筒壁应力分布的有利影响,是因为其预应力影响因素太多,难以精确计算,因此设计时仅将其作为前度储备之用
多项选择题关于内压厚壁圆筒的屈服压力和爆破压力,下面()描述是正确的。
A.初始屈服压力为圆筒内表面开始屈服时对应的压力,表明圆筒开始进入弹塑性应力状态B.全屈服压力是指筒壁达到整体屈服状态时所承受的压力;因此,不管圆筒材料是实际材料(具有硬化效应)还是理想弹塑性材料,都存在一个对应的全屈服压力C.塑性垮塌压力是圆筒所能承受的最大压力,它是圆筒进入弹塑性变形阶段材料强化效应与变形减薄效应共同作用的结果D.爆破压力是圆筒经过鼓胀变形后发生爆破时的压力;通常,圆筒的塑性垮塌压力要大于爆破压力,但工程上往往把塑性垮塌压力视为爆破压力
多项选择题对于塑性材料制成的厚壁圆筒,受压变形时压力与容积变化量的关系曲线表征了圆筒的受压变形特性。以下()阶段为圆筒从受压变形开始直至容器爆破的全过程。
A.弹性变形阶段,此时筒体处于弹性变形,未发生屈服,压力与容积变化量成正比B.弹塑性变形阶段,此时筒体随着压力的增加,屈服层从内壁向外壁扩展;在此阶段,材料的强化效应与变形减薄效应共存,直至筒体达到它的最大承载能力C.应变强化阶段,此时筒体因塑性变形导致材料产生强化效应,导致承压能力不断提升D.爆破阶段,此时筒体变形急剧增大,筒壁发生显著的鼓胀现象,壁厚不断减薄,承压能力下降,直至爆破压力,筒体发生爆破
多项选择题关于厚壁圆筒的自增强处理,下面()的描述是正确的。
A.厚壁圆筒自增强处理是在筒体投入使用前的一种超压(必须大于筒体的初始屈服压力)条件下形成的预应力处理技术。因此,为了得到更大的残余应力,自增强处理的压力越大越好B.自增强处理技术其本质是在超压条件下,筒壁形成的塑性区和弹性区之间的相互约束,从而在筒壁产生了残余应力C.自增强处理技术由于残余应力的存在,可有效地改善筒壁的应力分布,从而有效地提高了筒壁的弹性承载能力D.厚壁圆筒的自增强处理技术同样适用于薄壁圆筒,因为它可以显著地改善筒壁的应力分布状态
多项选择题对于受内压的单层厚壁圆筒,以下()的描述是正确的。
A.随着内压的增大,由于筒体内壁面应力水平较高,筒体首先在内层材料进入屈服应力状态并形成屈服区,外层材料则处于弹性应力状态形成弹性区B.与弹性区的应力求解方法相同,塑性区的应力求解同样可以采用与弹性区相同的微元平衡方程,只需注意到塑性区材料还应符合Mises或Tresca屈服失效判据C.进入弹塑性状态后的圆筒,当内压载荷全部卸除后,筒壁中的弹性区和塑性区将产生自平衡的残余应力和残余应变D.厚壁圆筒筒壁残余应力在弹性区和塑性区的分别规律明显不同,外壁弹性区力求恢复原来的形状而受到内壁塑性区的阻碍。因而,外壁弹性区呈现为压缩应力,而内壁塑性区表现为拉伸应力
多项选择题关于厚壁圆筒的热应力,下面()描述是正确的。
A.热应力是由于在筒壁中存在的温度差引起的变形(自由膨胀或收缩)受到约束而在弹性体内所产生的自平衡应力B.热应力的大小仅与内外壁的温度差有关,而与筒体的径比K值(或筒体的厚度)无关C.热应力沿筒体壁厚方向是变化的,其在筒壁上的分布与筒体的加热方式(内部加热还是外部加热)密切相关;内部加热时产生的热应力可显著改善受内压作用时筒体的筒壁应力分布D.热应力具有明显的自限性。因此,对于塑性材料制容器,热应力不会导致容器的断裂,但可能导致容器发生疲劳失效或塑性变形累积