问答题在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF的度数.
问答题设a、b、c是直角三角形的三边,c为斜边,整数n≥3,求证:an+bn<cn.
问答题如下图所示,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏. (1)随机翻一个杯子,求翻到黄色杯子的概率; (2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一杯口朝上的概率.
问答题某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下图所示.阴影区域为绿化区(四块绿化区是全等的矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元. (1)设一块绿化区的长边为xm,写出工程总价y与x的函数关系式(写出x的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x为整数的所有工程方案;若不能,请说明理由.
问答题证明:f(x)≤2x-2。
问答题求a,b的值;
问答题已知点A(0,2)和抛物线y2=x+4上两点B、C使得AB⊥BC,求点C的纵坐标的取值范围.
问答题当0<a<2时,f(x)在[1,4]上的最小值为求f(x)在该区间上的最大值。
问答题若f(x)在[*]上存在单调递增区间,求a的取值范围;
问答题计算: