A.It can use computers to check the design.B.It already……
TEXT A
It looks as if it came
straight from the set of Star Wars. It has four-wheel drive and rises a bove
rocky surfaces. It lowers and raises its nose when going Up and down hills. And
when it comes to a river, it turns amphibious; two hydro jets power it along by
blasting water under its body. There is room for two passengers and a driver,
who sit inside a glass bubble operating electronic, aircraft-type controls. A
vehicle so daring on land and water needs windscreen wipers -- but it doesn’t
have any. Water molecules are disintegrated on the screen’s surface by
ultrasonic sensors.
This unusual vehicle is the Racoon. It is an
invention not of Hollywood but of Renault, a rather conservative French
state-owned carmaker, better known for its family hatchbacks. Renault built the
Racoon to explore new freedoms for designers and engineers created by advances
in materials and manufacturing processes. Renault is thinking about startlingly
different cars; other producers have radical new ideas for trains, boats and
aeroplanes.
The first of the new freedoms is in design. Powerful
computer-aided design (CAD) systems can replace with a click of a computer mouse
hours of laborious work done on thousands of drawing boards. So new products, no
matter how complicated, can be developed much faster. For the first time, Boeing
will not have to build a giant replica of its new airliner, the 777, to make
sure all the bits fit together. Its CAD system will take care of that.
But Renault is taking CAD further. It claims the Racoon is the world’s
first vehicle to be designed within the digitised world of virtual reality.
Complex programs were used to simulate the vehicle and the terrain that it was
expected to cross. This allowed a team led by Patrick Le Quement, Renault’s
industrial-design director, to "drive" it long before a prototype
existed.
Renault is not alone in thinking that virtual reality
will transform automotive design. In Detroit, Ford is also investigating its
potential. Jack Telnac, the firm’s head of design, would like designers in
different parts of the world to work more closely together, linked by computers.
They would do more than style cars. Virtual reality will allow engineers to peer
inside the working parts of a vehicle. Designers will watch bearings move, oil
flow, gears mesh and hydraulics pump. As these techniques catch on, even
stranger vehicles are likely to come along.
Transforming these
creations from virtual reality to actual reality will also become easier,
especially with advances in materials. Firms that once bashed everything out of
steel now find that new alloys or composite materials (which can be made from
mixtures of plastic, resin, ceramics and metals, reinforced with fibers such as
glass or carbon) are changing the rules of manufacturing. At the same time, old
materials keep getting better, as their producers try to secure their place in
the factory of the future. This competition is increasing the pace of
development of all materials.
One company in this field scaled
composites. It was started in 1982 by Burt Rutan, an aviator who has devised
many unusual aircraft. His company develops and tests prototypes that have
ranged from business aircraft to air racers. It has also worked on composite
sails for the America’s Cup yacht race and on General Motors’ Ultralite, a
100-miles-per-gallon experimental family car built from carbon fiber.
Again, the Racoon reflects this race between the old and the new. It uses
conventional steel and what Renault describes as a new "high-limit elastic
steel" in its chassis. This steel is 30% lighter than the usual kind. The Racoon
also has parts made from compostites. Renault plans to replace the petrol engine
with a small gas turbine, which could be made from heat-resisting ceramics, and
use it to run a generator that would provide power for electric motors at each
wheel.
With composites it is possible to build many different
parts into a single component. Fiat, Italy’s biggest car maker has worked out
that it could reduce the number of components needed in one of its car bodies
from 150 to 16 by using a composite shell rather than one made of steel.
Aircraft and cars may increasingly be assembled as if they were plastic
kits.
Advances in engine technology also make cars lighter. The
Ultralite, which Scaled composites helped to design for General Motors, uses a
two-stroke engine in a "power pod" at the rear of the vehicle. The engine has
been developed from an East German design and weighs 40% less than a
conventional engine but produces as much power. IT is expected to ran cleanly
enough to qualify as an ultra-low emissions vehicle under California’s tough new
rules.
Why will Boeing not need a replica of the 777
A.It can use computers to check the design.
B.It already has enough experience with plans.
C.It will only need to upgrade the replica of the previous model.
D.It can make sure all the bits fit together.