A.只提高1千克,产量的提高肯定是不显著的 B.日产量平均值为201(千克),确实比原来200(千克)有提高 C.因为没有提供总体标准差的信息,因而不可能作出判断 D.不必提供总体标准差的信息,只要提供样本标准差的信息就可以作出判断
单项选择题响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为:y=2.2+30000x1+0.0003x2由此方程可以得到结论是().
A.X1对Y的影响比X2对Y的影响要显著得多 B.X1对Y的影响比X2对Y的影响相同 C.X2对Y的影响比X1对Y的影响要显著得多 D.仅由此方程不能对X1及X2对Y影响大小作出判定
单项选择题为了判断两个变量间是否有相关关系,抽取了30对观测数据。计算出了他们的样本相关系数为0.65,对于两变量间是否相关的判断应该是这样的().
A.由于样本相关系数小于0.8,所以二者不相关 B.由于样本相关系数大于0.6,所以二者相关 C.由于检验两个变量间是否有相关关系的样本相关系数的临界值与样本量大小有关,所以要查样本相关系数表才能决定 D.由于相关系数并不能完全代表两个变量间是否有相关关系,本例信息量不够,不可能得出判定结果
单项选择题为了研究轧钢过程中的延伸量控制问题,在经过2水平的4个因子的全因子试验后,得到了回归方程。其中,因子A代表轧压长度,低水平是50cm,高水平为70cm。响应变量Y为延伸量(单位为cm)。在代码化后的回归方程中,A因子的回归系数是4。问,换算为原始变量(未代码化前)的方程时,此回归系数应该是多少?()
A.40 B.4 C.0.4 D.0.2
单项选择题在选定Y为响应变量后,选定了X1,X2,X3为自变量,并且用最小二乘法建立了多元回归方程。在MINITAB软件输出的ANOVA表中,看到P-Value=0.0021。在统计分析的输出中,找到了对各个回归系数是否为0的显著性检验结果。由此可以得到的正确判断是().
A.3个自变量回归系数检验中,应该至少有1个以上的回归系数的检验结果是显著的(即至少有1个以上的回归系数检验的P-Value小于0.05),不可能出现3个自变量回归系数检 验的P-Value都大于0.05的情况 B.有可能出现3个自变量回归系数检验的P-Value都大于0.05的情况,这说明数据本身有较多异常值,此时的结果已无意义,要对数据重新审核再来进行回归分析。 C.有可能出现3个自变量回归系数检验的P-Value都大于0.05的情况,这说明这3个自变量间可能有相关关系,这种情况很正常。 D.ANOVA表中的P-VALUE=0.0021说明整个回归模型效果不显著,回归根本无意义。
单项选择题M公司中的Z车间使用多台自动车床生产螺钉,其关键尺寸是根部的直径。为了分析究竟是什么原因导致直径变异过大,让3个工人,并随机选择5台机床,每人分别用这5车床各生产10个螺钉,共生产150个螺钉,对每个螺钉测量其直径,得到150个数据。为了分析直径变异产生的原因,应该()。
A.将工人及螺钉作为两个因子,进行两种方式分组的方差分析,分别计算出两个因子的显著性,并根据其显著性所显示的P值对变异原因作出判断。B.将工人及螺钉作为两个因子,按两个因子交叉CrosseD的模型,用一般线性模型计算出两个因子的方差分量及误差的方差分量,并根据这些方差分量的大小对变异原因作出判断。C.将工人及螺钉作为两个因子,按两个因子嵌套NesteD的模型,用全嵌套模型计算出两个因子的方差分量及误差的方差分量,并根据这些方差分量的大小对变异原因作出判断。D.根据传统的测量系统分析方法,直接计算出工人及螺钉两个因子方差分量及误差的方差分量,并根据这些方差分量的大小对变异原因作出判断。